A Zero-Dissipative Runge-Kutta-Nyström Method with Minimal Phase-Lag
نویسندگان
چکیده
An explicit Runge-Kutta-Nyström method is developed for solving second-order differential equations of the form q′′ f t, q where the solutions are oscillatory. The method has zero-dissipation with minimal phase-lag at a cost of three-function evaluations per step of integration. Numerical comparisons with RKN3HS, RKN3V, RKN4G, and RKN4C methods show the preciseness and effectiveness of the method developed.
منابع مشابه
A New Optimized Runge-Kutta-Nyström Method to Solve Oscillation Problems
In this article, a new Runge-Kutta-Nyström method is derived. The new RKN method has zero phase-lag, zero amplification error and zero first derivative of phase-lag. This method is basically based on the sixth algebraic order Runge-Kutta-Nyström method, which has proposed by Dormand, El-Mikkawy and Prince. Numerical illustrations show that the new proposed method is much efficient as compared w...
متن کاملZero-Dissipative Explicit Runge-Kutta Method for Periodic Initial Value Problems
Abstract—In this paper zero-dissipative explicit Runge-Kutta method is derived for solving second-order ordinary differential equations with periodical solutions. The phase-lag and dissipation properties for Runge-Kutta (RK) method are also discussed. The new method has algebraic order three with dissipation of order infinity. The numerical results for the new method are compared with existing ...
متن کاملSymplectic Runge-Kutta-Nyström Methods with Phase-Lag Oder 8 and Infinity
In this work we consider Symplectic Runge Kutta Nyström methods with five stages. A new fourth algebraic order method with phase-lag order eight is presented. Also the symplectic Runge Kutta Nyström of Calvo and Sanz Serna with five stages and fourth order is modified to produce a phase-fitted method. We apply the new methods on several Hamiltonian systems and on the computation of the eigenval...
متن کاملA New Diagonally Implicit Runge-Kutta-Nyström Method for Periodic IVPs
A new diagonally implicit Runge-Kutta-Nyström (RKN) method is developed for the integration of initial-value problems for second-order ordinary differential equations possessing oscillatory solutions. Presented is a method which is three-stage fourth-order with dispersive order six and 'small' principal local truncation error terms and dissipation constant. The analysis of phase-lag, dissipatio...
متن کامل